For #1-3

- a) Find and classify the critical point(s).
- b) Find the interval(s) where f(x) is increasing.
- c) Find the interval(s) where f(x) is decreasing.

1.
$$f(x) = x^2 - x - 1$$

2. $f(x) = 2x^4 - 4x^2 + 1$
3. $f(x) = xe^{\frac{1}{x}}$

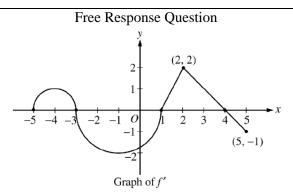
For # 4-6

- a) Find the *x*-coordinate of the point(s) of inflection.
- b) Find the interval(s) where f(x) is concave up.
- c) Find the interval(s) where f(x) is concave down.

4.
$$f(x) = 4x^3 + 21x^2 + 36x - 20$$
 5. $f(x) = 2x^{\frac{1}{5}} + 3$ 6. $f(x) = -x^4 + 4x^3 - 4x + 1$

For #7-10, find all points of inflection of the function. Justify your answer.

7. $y = xe^x$	8. $f(x) = \tan^{-1} x$
9. $f(x) = x^{\frac{1}{3}}(x-4)$	10. $y = \frac{x^3 - 2x^2 + x - 1}{x - 2}$



Let *f* be a function defined on the closed interval $-5 \le x \le 5$ with f(1)=3. The graph of *f*', the derivative of *f*, consists of two semicircles and two line segments, as shown above.

- (a) For -5 < x < 5, find all values of x at which f has a relative maximum. Justify your answer.
- (b) For -5 < x < 5, find all values of x at which f has a point of inflection. Justify your answer.
- (c) Find all intervals on which the graph of f (not shown) is concave up. Justify your answer.
- (d) Find all intervals on which the graph of f (not shown) has a positive slope. Justify your answer.

Answers:

	Relative Min f' changes from $-$ to $+$	Relative Max f' changes from + to -	Increasing $f' > 0$	Decreasing $f' < 0$
1.	$\left(\frac{1}{2},-\frac{5}{4}\right)$	None	$\left(\frac{1}{2},\infty\right)$	$\left(-\infty,\frac{1}{2}\right)$
2.	(-1,-1) and $(1,-1)$	(0,1)	$(-1,0)$ and $(1,\infty)$	$(-\infty, -1)$ and $(0, 1)$
3	(1,e)	None	(1,∞)	(-∞,1)

	<i>x</i> -coordinate of point of inflection <i>f</i> " changes signs	Concave Up $f'' > 0$	Concave Down f'' < 0
4.	$x = -\frac{7}{4}$	$\left(-\frac{7}{4},\infty\right)$	$\left(-\infty,-\frac{7}{4}\right)$
5.	x = 0	$(-\infty,0)$	$(0,\infty)$
6.	x = 0 and $x = 2$	(0,2)	$(-\infty,2)$ and $(2,\infty)$

$7. \left(-2, -\frac{1}{e^2}\right)$	7. $\left(-2, -\frac{2}{e^2}\right)$	8. (0,0)	9. (0,0) and $(-2,6\sqrt[3]{2})$	10. (1,1)
--------------------------------------	---	----------	----------------------------------	-----------

Free Response Question:

a) f has a relative maximum at x = -3 and x = 4 because f'(x) changes signs from positive to negative.

b) f has a point of inflection at x = -1 and x = 2 because f'' changes signs

c) f is concave up on (-5, -4) and (-1, 2) because f' is increasing or f'' > 0

d) f has a positive slope on (-5, -3) and (1, 4) because f' > 0.