CALCULUS

WORKSHEET ON AVERAGE VALUE

Work the following on notebook paper. Use your calculator on problems 3-6, and give decimal answers correct to three decimal places.
On problems 1 and 2,
(a) Find the average value of f on the given interval.
(b) Find the value of c such that $f_{A V E}=f(c)$.

1. $f(x)=(x-3)^{2},[2,5]$
2. $f(x)=\sqrt{x},[0,4]$
3. The table below gives values of a continuous function. Use a midpoint Riemann sum with three equal subintervals to estimate the average value of f on $[20,50]$.

x	20	25	30	35	40	45	50
$f(x)$	42	38	31	29	35	48	60

4. The velocity graph of an accelerating car is shown on the right.
(a) Estimate the average velocity of the car during the first 12 seconds by using a midpoint Riemann sum with three equal subintervals.
(b) At what time was the instantaneous velocity equal to the average velocity?

5. In a certain city, the temperature, in ${ }^{\circ} \mathrm{F}, t$ hours after 9 AM was modeled by the function $T(t)=50+14 \sin \left(\frac{\pi t}{12}\right)$. Find the average temperature during the period from 9 AM to 9 PM .
6. If a cup of coffee has temperature $95^{\circ} \mathrm{C}$ in a room where the temperature is $20^{\circ} \mathrm{C}$, then, according to Newton's Law of Cooling, the temperature of the coffee after t minutes is given by the function $T(t)=20+75 e^{-t / 50}$. What is the average temperature of the coffee during the first half hour?
7. Suppose the $C(t)$ represents the daily cost of heating your house, measured in dollars per day, where t is time measured in days and $t=0$ corresponds to January 1, 2010.. Interpret $\int_{0}^{90} C(t) d t$ and $\frac{1}{90-0} \int_{0}^{90} C(t) d t$.
8. Using the figure on the right,
(a) Find $\int_{1}^{6} f(x) d x$.
(b) What is the average value of f on $[1,6]$?

Graph of f
9. The average value of $y=f(x)$ equals 4 for $1 \leq x \leq 6$ and equals 5 for $6 \leq x \leq 8$.

What is the average value of $f(x)$ for $1 \leq x \leq 8$?
10. Suppose $\int_{0}^{3} f(x) d x=6$.
(a) What is the average value of $f(x)$ on the interval $x=0$ to $x=3$?
(b) If $f(x)$ is even, what is the value of $\int_{-3}^{3} f(x) d x$? What is the average value of $f(x)$ on the interval $x=-3$ to $x=3$?
(c) If $f(x)$ is odd, what is the value of $\int_{-3}^{3} f(x) d x$? What is the average value of $f(x)$ on the interval $x=-3$ to $x=3$?

In problems $11-14$, find the average value of the function on the given interval without integrating.
Hint: Use Geometry. (No calculator)
11. $f(x)=\left\{\begin{array}{l}x+4,-4 \leq x \leq-1 \\ -x+2,-1 \leq x \leq 2\end{array}\right.$ on $[-4,2]$

12. $f(x)=1-\sqrt{1-x^{2}}[-1,1]$

13. $f(x)=\sin x,[0,2 \pi]$
14. $f(x)=\tan x,\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$

