1. Odd and even functions; symmetry

a) $f(x)$ is even if $f(-x)=f(x)$
b) $f(x)$ is odd if $f(-x)=-f(x)$
c) Symmetry:

Even: y-axis symmetry
Odd: origin symmetry

2. Test for continuity

$f(x)$ is continuous at $x=a$ if each of the following conditions are met:
a) $f(a)$ exists
b) $\lim _{x \rightarrow a} f(x)$ exists
c) $\lim _{x \rightarrow a} f(x)=f(a)$

3. Derivatives as a limit

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

4. First Derivative Test

a) $\mathrm{f}(\mathrm{x})$ has an extremum at a if $f^{\prime}(a)=0$ or undefined and $f^{\prime}(x)$ changes sign around a.
b) $\mathrm{f}(\mathrm{x})$ increases where $f^{\prime}(x)>0$; $\mathrm{f}(\mathrm{x})$ decreases where $f^{\prime}(x)<0$.

5. Second Derivative Test

a) If $f^{\prime}(a)=0$ or undefined, then

1) $f^{\prime \prime}(a)>0 \Rightarrow \min$ at $x=a$
2) $f^{\prime \prime}(a)<0 \Rightarrow \max$ at $x=a$
b) f has an inflection point at $\mathrm{x}=\mathrm{a}$ and $f^{\prime \prime}(x)=0$ and f " (x) changes sign around $\mathrm{x}=\mathrm{a}$.
c) f is concave up where $f^{\prime \prime}(x)>0$; f is concave down where f " $(x)<0$.

6. Asymptotes

a) Vertical: At $x=a$ if $\lim _{x \rightarrow a} f(x)= \pm \infty$
b) Horizontal: At $\mathrm{y}=\mathrm{b}$ if $\lim _{x \rightarrow \pm \infty} f(x)=b$

7. Extreme Value Theorem (Absolute max/min)

For $\mathrm{f}(\mathrm{x})$ continuous on [a, b], extrema (absolute max/min) occur among:
a) $f(a)$ or $f(b)$ (endpoints of given interval)
b) where $f^{\prime}(c)=0$ or undefined (at critical points)

8. Mean Value Theorem

For f continuous on [a, b] and differentiable on (a, b), there exists c in (a, b) such that
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

9. Rolle's Theorem

For f continuous on [a, b] and differentiable on (a, b), there exists c in (a, b) such that if $f(a)=f(b)=0$, then $f^{\prime}(c)=0$.

10. Rectilinear Motion

a) $v(t)=x^{\prime}(t) ; \quad x(t)=\int v(t) d t$
b) $a(t)=v^{\prime}(t)=x^{\prime}(t) ; \quad v(t)=\int a(t) d t$
c) Particle moves: Right when $\mathrm{v}(\mathrm{t})>0$ Left when $\mathrm{v}(\mathrm{t})<0$
d) speed $=|v(t)|$
e) Particle speeds up when $a(t)$ and $v(t)$ are the same sign; Particle slows down when a(t) and $\mathrm{v}(\mathrm{t})$ are opposite signs.
11. Equation of a tangent line to a curve

If $\mathrm{y}=\mathrm{f}(\mathrm{x})$, then the tangent line at $x=a$ is:

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

12. Area of a Region of a Plane

For a region bounded by f and g ($\mathrm{f}>\mathrm{g}$) over vertical boundaries $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$:

$$
\text { Area }=\int_{a}^{b}[f(x)-g(x)] d x
$$

13. Volume of a Solid of Revolution

a) Circular Disk (Coin) $V=\pi \int_{a}^{b} r^{2} d r$
b) Circular Ring (Washer) $V=\pi \int_{a}^{b}\left[R^{2}-r^{2}\right] d r$
c) Cross-Section $V=\int_{a}^{b}$ [Area of cross section]

14. Average Value of a Function

Average Value $=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

