DATE

NAME

Theorems of Calculus

Rolle's Theorem states: If a function is continuous at every point on a closed interval [a, b] and differentiable on every point of its interior (a, b) and f(a) = f(b) = 0, then there is at least one number *c* between *a* and *b* at which f'(c) = 0.

A variation of Rolle's Theorem includes broader conditions: If function f(x) is continuous at every point in a closed interval [a, b] and f(a) = f(b), then there exists at least one critical point of f(x) between x = a and x = b.

1. Using this variation of Rolle's Theorem, find and mark the critical points on the following graphs, if applicable. If not applicable, explain why not.

4.2 Concepts Worksheet

Continued

2. Given the functions below as drawn over the interval [a, b], are the conditions of the Mean Value Theorem met? (If not, why not?) If conditions are met, locate the value(s) of c that satisfy the equation $f'(c) = \frac{f(b) - f(a)}{b - a}$. Draw the parallel tangent lines and secant line implied in the Mean Value Theorem.

4.2 Concepts Worksheet

Concept Connectors

3. Suppose that f(x) is a function with continuous first and second derivatives on the closed interval [1, 3] whose values for f and f' at x = 1 and x = 3 are given below:

x	f(x)	f'(x)		
1	5	2		
3	7	-1		

(a) Prove there exists a value of c, 1 < c < 3, such that f'(c) = 1.

(b) Prove there exists a value of d, 1 < d < 3, such that $f''(d) = -\frac{3}{2}$.

DATE

.3 Concepts Worksheet

NAME

Graph Sketching Using Derivatives

1. Sketch a graph of a differentiable function f(x) over the closed interval [-2, 7], where f(-2) = f(7) = -3 and f(4) = 3. The roots of f(x) = 0 occur at x = 0 and x = 6, and f(x) has properties indicated in the table below:

x	-2 < x < 0	x = 0	0 < x < 2	x = 2	2 < x < 4	x = 4	4 < x < 7
f'(x)	positive	0	positive	1	positive	0	negative
f''(x)	negative	0	positive	0	negative	0	negative

2. Sketch a graph of the continuous even function g(x) over the closed interval of x values [-5, 5] having a range of g(x) values [-1, 0]. For x ≥ 0, roots of g(x) = 0 occur at every whole number k and roots of g'(x) = 0 occur at k/2. The first and second derivatives of g(x) exist everywhere except at x = k. Furthermore, g"(x) > 0 for every x ≠ k.

Continued

- **3.** Sketch a function h(x) from the following information:
 - (a) h(-x) = -h(x)
 - **(b)** $\lim_{x\to 0^+} h(x) = \infty$
 - (c) $\lim h(x) = 0$

 $x \rightarrow +\infty$

- (d) For x > 0, h(x) = 0 only at x = 1
- (e) For x > 0, h'(x) = 0 only at x = 2
- (f) For x > 0, h''(x) = 0 only at x = 3

Concept Connectors

4. The graph of f(x) is shown on the closed interval [-6a, 6a]:

Answer the following questions regarding f(x):

- (a) For $x \neq 0$, the graph of f(x) has symmetry about the ______, that is f(-x) = ______.
- (b) f has point(s) of discontinuity at x = _____
- (c) $\lim_{x \to 0} f(x) =$ _____.
- (d) The zeros of f(x) occur at x =_____.
- (e) f'(x) does not exist at x = _____.
- (f) f''(x) < 0 for the x interval(s) _____.