Sets of Numbers
Imaginary (or Complex) Numbers: Has $i($ which $=\sqrt{-1})$ in it
Real Numbers: Everything except imaginary
Irrational Numbers: Non-terminating, non-repeating decimals like π, e, or $\sqrt{2}$
Rational Numbers: Can be written as a fraction $\frac{a}{b}$
Integers: All whole numbers (including zero and negatives)
Natural Numbers: Positive whole numbers

Interval Notation
An interval is a piece of the number line (like all numbers between 2 and 5)
Write it as the two endpoints separated by a comma in parentheses
For $\mathrm{a} \leq$ or \geq, use square parentheses. For $\mathrm{a}<$ or $>$, use regular parentheses
$2<x \leq 5 \Leftrightarrow(2,5]$
$\mathrm{U}=$ union (combination of two intervals)
$\mathrm{n}=$ intersection (overlap of two intervals)
Write in interval notation:
$-3<x \leq 5$
$x>5$
$x<-3$ or $x \geq 2$

Distance Formula
To find the length of a segment using its endpoints
$D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Midpoint Formula

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Find the distance between the points $(5,-1)$ and $(-2,7)$. Then find the midpoint.

Factoring
To solve an equation by factoring, it must be equal to zero!!!
Some common factoring patterns to know:

$$
\begin{aligned}
& u^{2}-v^{2}=(u+v)(u-v) \\
& u^{3}+v^{3}=(u+v)\left(u^{2}-u v+v^{2}\right) \\
& u^{3}-v^{3}=(u-v)\left(u^{2}+u v+v^{2}\right)
\end{aligned}
$$

Solve for $x: 9 \mathrm{x}^{2}-15 x=-6$	Factor and simplify: $27 \mathrm{x}^{3}-y^{6}$

Slope
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}=$ "rate of change "

Lines
Slope-intercept form: $y=m x+b$
Point-Slope form: $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$
Standard form: $A x+B y=C(A, B$ and C are non-zero whole numbers)
Vertical line: $x=$ constant
Horizontal line: $y=$ constant
Parallel Lines: $\quad m_{l}=m_{2}$
Perpendicular Lines: $\quad m_{1} \cdot m_{2}=-1 \quad\left(\right.$ i.e. $\left.\quad m_{1}=-\frac{1}{m_{2}}\right)$

Find the equation of the line with a slope of -3 that passes through the point $(-2,5)$

To find an intercept of any graph, set all other variables equal to zero and solve for the remaining variable

Find the x -intercept(s) of the graph of $y=x^{3}-4 x$

Find the y-intercept

Functions

Function: An equation that relates 2 variables where each input has exactly one output ("vertical line test" says that if a vertical line crosses a graph more than once, then it is not a function)
Domain: Any x that can be put into the function and give a valid output (remember, the easiest way to find domain is you ask yourself what x can not be)
\mathbb{R} : All Real numbers $=(-\infty, \infty)$
\emptyset : The empty set (nothing)
$\{\mathbb{R} \mid x \leq 5\}$: "The set of all real numbers x, such that x is less than or equal to 5 "
Range: All the values that $f(x)$ takes on.
The easiest way to find range is using a graph. Look for a "floor" or "ceiling" the graph doesn't pass

Find the domain of $f(x)=\sqrt{x^{2}-4}$

Use a calculator to find the range

Find the domain of $g(x)=\frac{1}{|x|-1}$

Find the domain of $h(x)=\frac{x}{\sqrt{9-x^{2}}}$

Function Notation: x is the input, and $f(x)$ is the output (basically, $f(x)$ is y)
For $f(x)=x^{2}+7$, find $\frac{f(x+h)-f(x)}{h}$. (Note: this is called the difference quotient, and is important)

Restricting Domain

Sometimes you only want to look at a piece of a function. You can do this just by telling the reader what x can be.
For example:

$$
f(x)=x^{2}, \quad x \geq 0
$$

Would be the right side of a parabola
Write an equation for the graph of the line segment that connects the points $(2,5)$ and $(-7,1)$.

Piecewise Functions
A function with more than one equation.
Each equation is used over a separate interval (just like restricting domain)

$$
\begin{aligned}
& \text { If } f(x)= \begin{cases}2 x-3, & x \leq 0 \\
x^{2}+1, & x>0\end{cases} \\
& f(-2)=
\end{aligned} \quad f(3)=\quad f(0)=
$$

Absolute Value
$|x|$ is the distance from zero to a number x on a number line (direction doesn't matter)

$$
|x|=\left\{\begin{array}{cl}
x, & \text { if } x \geq 0 \\
-x, & \text { if } x<0
\end{array}\right.
$$

Solve for $\mathrm{x}: ~|5 x-3|<23$

Express $|2 x-3|$ as a piecewise function

Graphing

x is the horizontal component (distance right or left) $f(x)$ is the vertical component (height) at x

Library of functions:

Transformations
$y=f(x)+C$ shift up if C is positive, down if C is negative $y=f(x+C)$ shift left if C is positive, right if C is negative
$y=C \cdot f(x)$ stretch \uparrow by a factor of C
$y=f(C x)$ stretch \leftrightarrow by a factor of C
$y=-f(x)$ reflect about the x-axis
$y=f(-x)$ reflect about the y-axis

* reflect and stretch before you shift!

Even Function: $f(-x)=f(x)$ and the graph is symmetric about the y-axis
Odd Function: $f(-x)=-f(x)$ and the graph is symmetric about the origin $\left(180^{\circ}\right.$ rotation $)$
Note: cos is even, while sin and tan or odd. Reciprocals are the same.
Increasing: If $x_{1}>x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right) \quad$ ("Rising" over a certain interval)
Decreasing: If $x_{1}>x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right) \quad$ ("Falling" over a certain interval)
Constant: For any $x_{1}, x_{2}, f\left(x_{1}\right)=f\left(x_{2}\right) \quad$ ("Flat" over a certain interval)
Is each function even, odd or neither?
$f(x)=3 x^{2}-7 \quad f(x)=3(x-2)^{3}$

Use the graph below to answer the questions.

1. Does the graph represent a function?

2. If so, what is its domain?
3. If so, what is its range?
4. On what interval(s) is the graph increasing?
5. When $x=-2$, what is $f(x)$?
6. For what value(s) of x does $f(x)=-3$?
7. Draw $f(x+2)$ on the graph above

Compositions:

$$
(f \circ g)(x)=f(g(x))
$$

Note: To find the domain of $f(g(x))$ you must also consider the domain of g (the second function)
Find the domain of $(f \circ g)(x)$ if $f(x)=\frac{2}{x-2}$ and $g(x)=2 x-1$

Find the domain of $(g \circ f)(x)$

Inverses

* To find a functions inverse, switch x and y, and solve for the new y.

Notation: $f^{-1}(x)$
Definition: $f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$
Graphs of inverse functions are reflections of each other in the line $y=x$
Important note:
Domain of $f(x)=$ Range of $f^{-1}(x)$
Range of $f^{-1}(x)=$ Domain of $f(x)$

$$
\text { If } f(x)=x^{3}+4, \text { find } f^{-1}(x)
$$

If $f(1)=5, f(3)=7$, and $f(8)=-10$
$f^{-1}(7)=\quad f^{-1}(5)=\quad f^{-1}(-10)=$

Properties of Exponents

$$
\begin{array}{ll}
a^{0}=1 & a^{x+y}=a^{x} a^{y} \\
a^{-n}=\frac{1}{a^{n}} & a^{x-y}=\frac{a^{x}}{a^{y}} \\
a^{\frac{p}{q}}=\sqrt[q]{a^{p}} & a^{x y}=\left(a^{x}\right)^{y} \\
& (a b)^{x}=a^{x} b^{x}
\end{array}
$$

True or false: $\left(\frac{1}{2}\right)^{x}=2^{-x}$

Evaluate: $25^{-\frac{1}{2}}$

Logarithms

$\log _{5} x$ is read "log base 5 of x " and means " 5 to what power equals x ?"
b can be any positive number except 1
You can not take the log of a negative number or zero (domain is $x>0$)
Logs and exponentials are inverses!
Properties of Logarithms (For any $b>0$)

1. $\log _{b} 1=0$
2. $\log _{b} b=1$
3. $\log _{b} b^{x}=x$
4. $\log _{b}(x y)=\log _{b} x+\log _{b} y$
5. $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
6. $\log _{b}\left(x^{c}\right)=c \log _{b} x$
7. $\log _{n} m=\frac{\log _{b} m}{\log _{b} n}$ for any b

Converting logs to exponentials

Method 1 - Definition of inverses Just switch x and y

Method 2 - Canceling out functions
Use property 3 or 4 above

Convert: $\quad \log _{5} 7 x=y-3 \quad e^{3 x+1}=20$

Find the domain of:

$$
\log _{5}\left(x^{2}-4\right)
$$

Solving Log/Exp Equations
Isolate the log/exp function
Switch forms using one of the methods above
Solve for x
Check your answers (extraneous solutions for log solutions)

$5 e^{x}-3=12$	$\ln x-5=2$
$\log _{b} \sqrt{3}=\frac{1}{4}$	

$e^{x}-2 e^{-x}=1$	$-x^{2} e^{-x}+2 x e^{-x}=0$
$4^{x}-2^{x}-2=0$	

Trigonometry
Know the unit circle!!!! I'm not going to re-re-re-re-teach it.
Know radian angles $\left(2 \pi=360^{\circ}\right)$
Know Identities: Reciprocal, Pythagorean, Even/Odd

Evaluate:

$\sin \frac{7 \pi}{6}$
$\cos \left(-\frac{\pi}{3}\right)$
$\sin ^{-1}\left(\sin \left(-\frac{\pi}{3}\right)\right)$
$\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$
$\cos ^{2} \frac{\pi}{16}+\sin ^{2} \frac{\pi}{16}$

Solving Trig Equations
Isolate the trig function(s) first (often done by factoring)
Solve using inverse trig (unit circle)

$2 \sin x+1=0$ on $[0,2 \pi)$	$2 \sin x+\sin ^{2} x=0$ on $[0,2 \pi)$	
$\cos x+2 \cos ^{2} x=1$ on $[0,2 \pi)$		
$2 \cos x+1=\sin x$ on $[0,2 \pi)$		

